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The definition of refractory epilepsy is controversy.

A patient is considered to have refractory epilepsy if any

seizures occur while the person is documented as having

an antiepileptic drug (AED) concentration of at least

one standard medication in the usually effective range,

and the def inition holds until the patient has been

seizure free for at least one year(1). Refractory epilepsy

can also be defined as a chronic disorder requiring treat-

ment with AEDs over the course of many years(1). The

US National Association of Epilepsy Centers defines

AED resistance as continuing seizures despite 12

months of care in an epilepsy center(2). There is also

common agreement that failure of two monotherapy tri-

als is the minimum criterion for declaring that someone

has refractory epilepsy(3). 

Besides, correct identification of the patient and the

epilepsy syndrome is very important for proper selec-

tion of AEDs. In temporal lobe epilepsy (TLE), certain

AEDs such as carbamazepine, lamotrigine, topiramate,

oxcarbazepine, levetiracetam and zonisamide, become

the drugs of choice. To date, none of the new AEDs has

demonstrated a superior effectiveness over the older

AEDs in the head to head monotherapy trials(4-7). There

is no statistically signif icant difference in eff icacy
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among the new AEDs by head to head or meta-

analyses(8-10). Despite new AED therapy, epilepsy remains

uncontrolled in a significant proportion of patients(11-14),

particularly refractory TLE. 

In regard to the cause of refractory TLE, initial pre-

cipitating injury (IPI) of seizures may play a role in

refractory TLE. IPI is defined as any significant medical

event prior to seizure onset(15). They include febrile

seizures, status epilepticus, central nervous system infec-

tion, head trauma, or birth trauma.  However, previous

prospective epidemiologic studies of children experienc-

ing either one seizure or status epilepticus and popula-

tion studies of children with febrile seizures suggest that

the majority of these children will not develop refractory

TLE(16). This suggests that IPI alone may not be the cause

of refractory TLE. A large study found that patients with

IPI related to either status epilepticus or febrile seizures

were found to have hippocampal sclerosis (HS). It

explained that prolonged febrile seizures might produce

hippocampal injury and thereby increase hippocampal

excitability leading to the gradual development of HS

and TLE(15). In addition, HS constituted the most frequent

neuropathologic finding in adult patients with medically

refractory TLE(17), but this does not mean that all patients

with HS have refractory TLE. A study used a 3D volu-

metric sequence, T2 relaxation times and proton MR

spectroscopy to predict seizure intractability. It was

found that refractory TLE had HS associated with signal

change in the anterior temporal white matter and the

reduction of N-acetylaspartate in the ipsilateral temporal

lobe(18). Additionally, HS patients with refractory TLE

often have extrahippocampal structural abnormali-

ties(19-22). Recent study provides a unique quantitative

assessment in patients with TLE and indicates that

regions of the brain remote from the temporal lobe of

seizure onset may be adversely affected with significant

changes in cerebral cortical structure(23). It is concluded

that refractory TLE may not be related simply to the

presence of HS.

It was also found that hippocampal atrophy might be

seen immediately after episodes of status epilepticus,

febrile seizure and other severe IPI(24,25). Additionally,

progressive hippocampal atrophy was correlated with

durations of TLE(26). Hippocampal atrophy was associat-

ed with a substantially higher risk of relapse after AED

withdrawal(27). Other lesion etiologies in the temporal

lobe may be additional risk factors in refractory TLE.

Stroke, vascular malformation or tumor seem to be much

more treatment responsive than those associated with

cortical dysplasia, hippocampal sclerosis or dual

pathologies(28). Cortical dysplasia is frequently associated

with medically refractory epilepsy(29,30). A Sprague-

Dawley rat embryo model that mimics human focal cor-

tical dysplasia shows early development of hippocampal

kindling. Cortical dysplasia is therefore associated with

vulnerability to epilepsy(31).

The mechanisms underlying the refractory TLE are

not known. One explanation for refractory TLE is

impairment of drug penetration into the brain by efflux

transporters(32). One of the members of efflux transporters

is P-glycoprotein (P-gp). P-gp is believed to act as an

active efflux pump by reducing intracellular drug accu-

mulation. P-gp belongs to a highly conserved protein

superfamily, the adenosine triphosphate (ATP)-binding

cassette (ABC) proteins which has more than 100 mem-

bers and can be found in all kinds of organisms(33).

Human P-gp is encoded by a small gene family compris-

ing two genes, designated ABCB1 or multiple drug

resistance 1 (MDR1) and ABCB4 or multiple drug resis-

tance 2 (MDR2), located near each other on chromo-

some 7q21.1(34). But only human MDR1 genes encode

the drug transporter associated with multidrug resis-

tance(35). This is supported by another study that overex-

pression of MDR1 gene in brain of some patients with

medically refractory epilepsy contributed to their lack of

response to AED treatment(36). The role of P-gp in drug

resistance in epilepsy is further complicated by the pres-

ence of other efflux transporters in the brain such as

multidrug resistance protein (MRP) with at least 9 mem-

bers identif ied in humans(37,38). Some 20 other efflux

transporters belonging to protein familities such as

organic anion transporter and organic cation transporter

and monocarboxylic acid transporter also have been

found in a variety of tissues including the brain(38-40).

Whether these transporters contribute to the blood-brain

barrier and drug resistance is largely unknown. The role
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of P-gp and other efflux transporters in drug resistance

of refractory epilepsy is assessed in different studies.

MDRs are upregulated in the hippocampus of patients

with refractory TLE(41). P-gp and multiple drug resistance

protein (MRP) are found in temporal lobe pathologies of

patients with refractory temporal epilepsy who under-

went temporal lobectomy(36,41-43). Current evidence sug-

gests that an overexpression of P-glycoprotein (P-gp)

encoded by MDR1 and other efflux transporters such as

MRP in the cerebrovascular endothelium in or around

the region of the epileptic focus may lead to drug resis-

tance in epilepsy(32).

Another major theory for refractory TLE is the loss

of antiepileptic drug sensitivity at certain target sites in

the brain. Cumulative evidence suggested that there was

reduced pharmacosensitivity to sodium channel-acting

drugs in both epileptic rats and patients with refractory

TLE(44). Carbamazepine produced a use-dependent block-

ade of sodium channel activity in normal rodent brain,

characterized by a progressive increase in inhibition with

higher frequencies of stimulation, but use-dependent

block of sodium channel activity was absent in epileptic

brain tissue. Loss of sodium channel sensitivity to carba-

mazepine was shown in tissue from temporal lobe

surgery patients resistant to carbamazepine(44). 

The sodium channel is just one of many possible

AED targets that may be altered in refractory TLE.

Alterations in gamma aminobutyric acid (GABA) A

receptor activity may be another target mechanism of

pharmacoresistance to certain AEDs. Using an experi-

mental model of TLE, the pharmacosensitivity of

(GABA)A receptor subunits was reduced in single den-

tate granule cells harvested from epileptic rats.

Reorganization of (GABA) A-receptor subtypes was

demonstrated in the hippocampus of human temporal

lobe epilepsy, reducing potency of AEDs that enhanced

GABAergic inhibition via (GABA)A receptor(45).

Frequency, duration and severity of seizures may

contribute to refractory TLE. Gowers first postulated the

seizures beget seizures(46). In TLE, hippocampal volume

as measured by MRI is inversely correlated with seizure

frequency(47). Other studies found no relationship

between frequency or duration and ipsilateral hippocam-

pal volume, but rather a correlation between seizure fre-

quency and contralateral hippocampal volume(24,48). The

total estimated number of seizures, partial or general-

ized, as calculated from reported frequency times dura-

tion of epilepsy, also correlated with hippocampal atro-

phy(49). The above studies show that hippocampal and

extrahippocampal neuronal damage or dysfunction

increases with duration of TLE in patients who become

intractable. 

Recent extensive experimental data have provided

sufficiently convincing evidence to suggest that seizures

indeed do beget seizures by means of a cascade of events

that include various types of neuronal damage, sprouting

of neuronal axons and new synapse formations that

establish aberrant glutamatergic synapses(50).

Experimental studies showed that mossy fiber synapses,

instrumental in TLE and enriched in kainate excitatory

receptors, sprout in humans and in animal models; the

mossy fiber synapses also establish novel functional

synapses, including aberrant ones(51,52). The formation of

aberrant kainate receptor-mediated synapses further con-

tributes to the generation of additional seizures(53). 

Additional studies showed that in some brain

regions, there is a direct link between the severity of

seizures and neuronal loss. The extent of the CA3 lesion

is directly correlated with the severity of the seizures i.e.,

duration of the postictal depressions; duration and sever-

ity of the ictal events(53); lesions of the mossy fibers that

innervate CA3 neurons reduce both the initial seizures

triggered by kainate and the extent and the severity of

the subsequent lesions(54); and neuronal damage is not

seen at an early developmental stage when mossy fibers

are not fully operative(55). It is concluded that seizure fre-

quency and intensity is critical to epilepsy progression in

refractory TLE(56). 

Recent study showed that TLE may be a progressive

neurological disorder that requires early and effective

treatment(57-59). MRI study revealed that progressive neo-

cortical atrophy occurred in patients with refractory TLE

and was correlated with epilepsy duration(23). The pro-

longed period of refractory epilepsy may be associated

with progressive psychosocial deprivation, and cognitive

impairment(60). It is also evident that patients with med-
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ically refractory TLE are physically and socially

disabled(60). Since epilepsy surgery is the most effective

“curative” management for patients with refractory

TLE(61,62), early recognition of refractory TLE and referral

for epilepsy surgery may prevent years of unnecessary

seizure activity and its consequences(63) and is recom-

mended for refractory TLE under American Academy of

Neurology practice guidelines(64).
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